Academic Tutorials



English | French | Portugese | German | Italian
Home Advertise Payments Recommended Websites Interview Questions FAQs
News Source Codes E-Books Downloads Jobs Web Hosting
Chats

Python
Introduction to Python
Using the Python Interpreter
An Informal Introduction to Python
More Control Flow Tools
Data Structures
Modules
Input and Output
Errors and Exceptions
Classes
Brief Tour of the Standard Library
Brief Tour of the Standard Library - Part II

HTML Tutorials
HTML Tutorial
XHTML Tutorial
CSS Tutorial
TCP/IP Tutorial
CSS 1.0
CSS 2.0
HLML
XML Tutorials
XML Tutorial
XSL Tutorial
XSLT Tutorial
DTD Tutorial
Schema Tutorial
XForms Tutorial
XSL-FO Tutorial
XML DOM Tutorial
XLink Tutorial
XQuery Tutorial
XPath Tutorial
XPointer Tutorial
RDF Tutorial
SOAP Tutorial
WSDL Tutorial
RSS Tutorial
WAP Tutorial
Web Services Tutorial
Browser Scripting
JavaScript Tutorial
VBScript Tutorial
DHTML Tutorial
HTML DOM Tutorial
WMLScript Tutorial
E4X Tutorial
Server Scripting
ASP Tutorial
PERL Tutorial
SQL Tutorial
ADO Tutorial
CVS
Python
Apple Script
PL/SQL Tutorial
SQL Server
PHP
.NET (dotnet)
Microsoft.Net
ASP.Net
.Net Mobile
C# : C Sharp
ADO.NET
VB.NET
VC++
Multimedia
SVG Tutorial
Flash Tutorial
Media Tutorial
SMIL Tutorial
Photoshop Tutorial
Gimp Tutorial
Matlab
Gnuplot Programming
GIF Animation Tutorial
Scientific Visualization Tutorial
Graphics
Web Building
Web Browsers
Web Hosting
W3C Tutorial
Web Building
Web Quality
Web Semantic
Web Careers
Weblogic Tutorial
SEO
Web Site Hosting
Domain Name
Java Tutorials
Java Tutorial
JSP Tutorial
Servlets Tutorial
Struts Tutorial
EJB Tutorial
JMS Tutorial
JMX Tutorial
Eclipse
J2ME
JBOSS
Programming Langauges
C Tutorial
C++ Tutorial
Visual Basic Tutorial
Data Structures Using C
Cobol
Assembly Language
Mainframe
Forth Programming
Lisp Programming
Pascal
Delphi
Fortran
OOPs
Data Warehousing
CGI Programming
Emacs Tutorial
Gnome
ILU
Soft Skills
Communication Skills
Time Management
Project Management
Team Work
Leadership Skills
Corporate Communication
Negotiation Skills
Database Tutorials
Oracle
MySQL
Operating System
BSD
Symbian
Unix
Internet
IP-Masquerading
IPC
MIDI
Software Testing
Testing
Firewalls
SAP Module
ERP
ABAP
Business Warehousing
SAP Basis
Material Management
Sales & Distribution
Human Resource
Netweaver
Customer Relationship Management
Production and Planning
Networking Programming
Corba Tutorial
Networking Tutorial
Microsoft Office
Microsoft Word
Microsoft Outlook
Microsoft PowerPoint
Microsoft Publisher
Microsoft Excel
Microsoft Front Page
Microsoft InfoPath
Microsoft Access
Accounting
Financial Accounting
Managerial Accounting
Network Sites


Input and Output


Previoushome Next






Input and Output


A D V E R T I S E M E N T

There are several ways to present the output of a program; data can be printed in a human-readable form, or written to a file for future use. This chapter will discuss some of the possibilities.


Fancier Output Formatting

So far we've encountered two ways of writing values: expression statements and the print statement. (A third way is using the write() method of file objects; the standard output file can be referenced as sys.stdout. See the Library Reference for more information on this.)

Often you'll want more control over the formatting of your output than simply printing space-separated values. There are two ways to format your output; the first way is to do all the string handling yourself; using string slicing and concatenation operations you can create any layout you can imagine. The standard module string contains some useful operations for padding strings to a given column width; these will be discussed shortly. The second way is to use the % operator with a string as the left argument. The % operator interprets the left argument much like a sprintf()-style format string to be applied to the right argument, and returns the string resulting from this formatting operation.

One question remains, of course: how do you convert values to strings? Luckily, Python has ways to convert any value to a string: pass it to the repr() or str() functions. Reverse quotes (``) are equivalent to repr(), but they are no longer used in modern Python code and will likely not be in future versions of the language.

The str() function is meant to return representations of values which are fairly human-readable, while repr() is meant to generate representations which can be read by the interpreter (or will force a SyntaxError if there is not equivalent syntax). For objects which don't have a particular representation for human consumption, str() will return the same value as repr(). Many values, such as numbers or structures like lists and dictionaries, have the same representation using either function. Strings and floating point numbers, in particular, have two distinct representations.

Some examples:

>>> s = 'Hello, world.'
>>> str(s)
'Hello, world.'
>>> repr(s)
"'Hello, world.'"
>>> str(0.1)
'0.1'
>>> repr(0.1)
'0.10000000000000001'
>>> x = 10 * 3.25
>>> y = 200 * 200
>>> s = 'The value of x is ' + repr(x) + ', and y is ' + repr(y) + '...'
>>> print s
The value of x is 32.5, and y is 40000...
>>> # The repr() of a string adds string quotes and backslashes:
... hello = 'hello, world\n'
>>> hellos = repr(hello)
>>> print hellos
'hello, world\n'
>>> # The argument to repr() may be any Python object:
... repr((x, y, ('spam', 'eggs')))
"(32.5, 40000, ('spam', 'eggs'))"
>>> # reverse quotes are convenient in interactive sessions:
... `x, y, ('spam', 'eggs')`
"(32.5, 40000, ('spam', 'eggs'))"

Here are two ways to write a table of squares and cubes:

>>> for x in range(1, 11):
...     print repr(x).rjust(2), repr(x*x).rjust(3),
...     # Note trailing comma on previous line
...     print repr(x*x*x).rjust(4)
...
 1   1    1
 2   4    8
 3   9   27
 4  16   64
 5  25  125
 6  36  216
 7  49  343
 8  64  512
 9  81  729
10 100 1000

>>> for x in range(1,11):
...     print '%2d %3d %4d' % (x, x*x, x*x*x)
... 
 1   1    1
 2   4    8
 3   9   27
 4  16   64
 5  25  125
 6  36  216
 7  49  343
 8  64  512
 9  81  729
10 100 1000

(Note that in the first example, one space between each column was added by the way print works: it always adds spaces between its arguments.)

This example demonstrates the rjust() method of string objects, which right-justifies a string in a field of a given width by padding it with spaces on the left. There are similar methods ljust() and center(). These methods do not write anything, they just return a new string. If the input string is too long, they don't truncate it, but return it unchanged; this will mess up your column lay-out but that's usually better than the alternative, which would be lying about a value. (If you really want truncation you can always add a slice operation, as in "x.ljust(n)[:n]".)

There is another method, zfill(), which pads a numeric string on the left with zeros. It understands about plus and minus signs:

>>> '12'.zfill(5)
'00012'
>>> '-3.14'.zfill(7)
'-003.14'
>>> '3.14159265359'.zfill(5)
'3.14159265359'

Using the % operator looks like this:

>>> import math
>>> print 'The value of PI is approximately %5.3f.' % math.pi
The value of PI is approximately 3.142.

If there is more than one format in the string, you need to pass a tuple as right operand, as in this example:

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 7678}
>>> for name, phone in table.items():
...     print '%-10s ==> %10d' % (name, phone)
... 
Jack       ==>       4098
Dcab       ==>       7678
Sjoerd     ==>       4127

Most formats work exactly as in C and require that you pass the proper type; however, if you don't you get an exception, not a core dump. The %s format is more relaxed: if the corresponding argument is not a string object, it is converted to string using the str() built-in function. Using * to pass the width or precision in as a separate (integer) argument is supported. The C formats %n and %p are not supported.

If you have a really long format string that you don't want to split up, it would be nice if you could reference the variables to be formatted by name instead of by position. This can be done by using form %(name)format, as shown here:

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 8637678}
>>> print 'Jack: %(Jack)d; Sjoerd: %(Sjoerd)d; Dcab: %(Dcab)d' % table
Jack: 4098; Sjoerd: 4127; Dcab: 8637678

This is particularly useful in combination with the new built-in vars() function, which returns a dictionary containing all local variables.


Reading and Writing Files

open() returns a file object, and is most commonly used with two arguments: "open(filename, mode)".

>>> f=open('/tmp/workfile', 'w')
>>> print f
<open file '/tmp/workfile', mode 'w' at 80a0960>

The first argument is a string containing the filename. The second argument is another string containing a few characters describing the way in which the file will be used. mode can be 'r' when the file will only be read, 'w' for only writing (an existing file with the same name will be erased), and 'a' opens the file for appending; any data written to the file is automatically added to the end. 'r+' opens the file for both reading and writing. The mode argument is optional; 'r' will be assumed if it's omitted.

On Windows and the Macintosh, 'b' appended to the mode opens the file in binary mode, so there are also modes like 'rb', 'wb', and 'r+b'. Windows makes a distinction between text and binary files; the end-of-line characters in text files are automatically altered slightly when data is read or written. This behind-the-scenes modification to file data is fine for ASCII text files, but it'll corrupt binary data like that in JPEG or EXE files. Be very careful to use binary mode when reading and writing such files.


Methods of File Objects

The rest of the examples in this section will assume that a file object called f has already been created.

To read a file's contents, call f.read(size), which reads some quantity of data and returns it as a string. size is an optional numeric argument. When size is omitted or negative, the entire contents of the file will be read and returned; it's your problem if the file is twice as large as your machine's memory. Otherwise, at most size bytes are read and returned. If the end of the file has been reached, f.read() will return an empty string ("").

>>> f.read()
'This is the entire file.\n'
>>> f.read()
''

f.readline() reads a single line from the file; a newline character (\n) is left at the end of the string, and is only omitted on the last line of the file if the file doesn't end in a newline. This makes the return value unambiguous; if f.readline() returns an empty string, the end of the file has been reached, while a blank line is represented by '\n', a string containing only a single newline.

>>> f.readline()
'This is the first line of the file.\n'
>>> f.readline()
'Second line of the file\n'
>>> f.readline()
''

f.readlines() returns a list containing all the lines of data in the file. If given an optional parameter sizehint, it reads that many bytes from the file and enough more to complete a line, and returns the lines from that. This is often used to allow efficient reading of a large file by lines, but without having to load the entire file in memory. Only complete lines will be returned.

>>> f.readlines()
['This is the first line of the file.\n', 'Second line of the file\n']

An alternate approach to reading lines is to loop over the file object. This is memory efficient, fast, and leads to simpler code:

>>> for line in f:
        print line,
        
This is the first line of the file.
Second line of the file

The alternative approach is simpler but does not provide as fine-grained control. Since the two approaches manage line buffering differently, they should not be mixed.

f.write(string) writes the contents of string to the file, returning None.

>>> f.write('This is a test\n')

To write something other than a string, it needs to be converted to a string first:

>>> value = ('the answer', 42)
>>> s = str(value)
>>> f.write(s)

f.tell() returns an integer giving the file object's current position in the file, measured in bytes from the beginning of the file. To change the file object's position, use "f.seek(offset, from_what)". The position is computed from adding offset to a reference point; the reference point is selected by the from_what argument. A from_what value of 0 measures from the beginning of the file, 1 uses the current file position, and 2 uses the end of the file as the reference point. from_what can be omitted and defaults to 0, using the beginning of the file as the reference point.

>>> f = open('/tmp/workfile', 'r+')
>>> f.write('0123456789abcdef')
>>> f.seek(5)     # Go to the 6th byte in the file
>>> f.read(1)        
'5'
>>> f.seek(-3, 2) # Go to the 3rd byte before the end
>>> f.read(1)
'd'

When you're done with a file, call f.close() to close it and free up any system resources taken up by the open file. After calling f.close(), attempts to use the file object will automatically fail.

>>> f.close()
>>> f.read()
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
ValueError: I/O operation on closed file

File objects have some additional methods, such as isatty() and truncate() which are less frequently used; consult the Library Reference for a complete guide to file objects.


The pickle Module

Strings can easily be written to and read from a file. Numbers take a bit more effort, since the read() method only returns strings, which will have to be passed to a function like int(), which takes a string like '123' and returns its numeric value 123. However, when you want to save more complex data types like lists, dictionaries, or class instances, things get a lot more complicated.

Rather than have users be constantly writing and debugging code to save complicated data types, Python provides a standard module called pickle. This is an amazing module that can take almost any Python object (even some forms of Python code!), and convert it to a string representation; this process is called pickling. Reconstructing the object from the string representation is called unpickling. Between pickling and unpickling, the string representing the object may have been stored in a file or data, or sent over a network connection to some distant machine.

If you have an object x, and a file object f that's been opened for writing, the simplest way to pickle the object takes only one line of code:

pickle.dump(x, f)

To unpickle the object again, if f is a file object which has been opened for reading:

x = pickle.load(f)


Be the first one to comment on this page.




  Python eBooks
More Links » »
 
 Python FAQs
More Links » »
 
 Python Interview Questions
More Links » »
 
 Python Articles

No Python Articles could be found as of now.

 
 Python News

No News on Python could be found as of now.

 
 Python Jobs

No Python Articles could be found as of now.


Share And Enjoy:These icons link to social bookmarking sites where readers can share and discover new web pages.
  • blinkbits
  • BlinkList
  • blogmarks
  • co.mments
  • connotea
  • del.icio.us
  • De.lirio.us
  • digg
  • Fark
  • feedmelinks
  • Furl
  • LinkaGoGo
  • Ma.gnolia
  • NewsVine
  • Netvouz
  • RawSugar
  • Reddit
  • scuttle
  • Shadows
  • Simpy
  • Smarking
  • Spurl
  • TailRank
  • Wists
  • YahooMyWeb

Previoushome Next

Keywords: Input and Output, Python Tutorial, Python tutorial pdf, history of Python, basic Python, syntax use in Python, Python training courses, Python tool kit, Python switch.

HTML Quizzes
HTML Quiz
XHTML Quiz
CSS Quiz
TCP/IP Quiz
CSS 1.0 Quiz
CSS 2.0 Quiz
HLML Quiz
XML Quizzes
XML Quiz
XSL Quiz
XSLT Quiz
DTD Quiz
Schema Quiz
XForms Quiz
XSL-FO Quiz
XML DOM Quiz
XLink Quiz
XQuery Quiz
XPath Quiz
XPointer Quiz
RDF Quiz
SOAP Quiz
WSDL Quiz
RSS Quiz
WAP Quiz
Web Services Quiz
Browser Scripting Quizzes
JavaScript Quiz
VBScript Quiz
DHTML Quiz
HTML DOM Quiz
WMLScript Quiz
E4X Quiz
Server Scripting Quizzes
ASP Quiz
PERL Quiz
SQL Quiz
ADO Quiz
CVS Quiz
Python Quiz
Apple Script Quiz
PL/SQL Quiz
SQL Server Quiz
PHP Quiz
.NET (dotnet) Quizzes
Microsoft.Net Quiz
ASP.Net Quiz
.Net Mobile Quiz
C# : C Sharp Quiz
ADO.NET Quiz
VB.NET Quiz
VC++ Quiz
Multimedia Quizzes
SVG Quiz
Flash Quiz
Media Quiz
SMIL Quiz
Photoshop Quiz
Gimp Quiz
Matlab Quiz
Gnuplot Programming Quiz
GIF Animation Quiz
Scientific Visualization Quiz
Graphics Quiz
Web Building Quizzes
Web Browsers Quiz
Web Hosting Quiz
W3C Quiz
Web Building Quiz
Web Quality Quiz
Web Semantic Quiz
Web Careers Quiz
Weblogic Quiz
SEO Quiz
Web Site Hosting Quiz
Domain Name Quiz
Java Quizzes
Java Quiz
JSP Quiz
Servlets Quiz
Struts Quiz
EJB Quiz
JMS Quiz
JMX Quiz
Eclipse Quiz
J2ME Quiz
JBOSS Quiz
Programming Langauges Quizzes
C Quiz
C++ Quiz
Visual Basic Quiz
Data Structures Using C Quiz
Cobol Quiz
Assembly Language Quiz
Mainframe Quiz
Forth Programming Quiz
Lisp Programming Quiz
Pascal Quiz
Delphi Quiz
Fortran Quiz
OOPs Quiz
Data Warehousing Quiz
CGI Programming Quiz
Emacs Quiz
Gnome Quiz
ILU Quiz
Soft Skills Quizzes
Communication Skills Quiz
Time Management Quiz
Project Management Quiz
Team Work Quiz
Leadership Skills Quiz
Corporate Communication Quiz
Negotiation Skills Quiz
Database Quizzes
Oracle Quiz
MySQL Quiz
Operating System Quizzes
BSD Quiz
Symbian Quiz
Unix Quiz
Internet Quiz
IP-Masquerading Quiz
IPC Quiz
MIDI Quiz
Software Testing Quizzes
Testing Quiz
Firewalls Quiz
SAP Module Quizzes
ERP Quiz
ABAP Quiz
Business Warehousing Quiz
SAP Basis Quiz
Material Management Quiz
Sales & Distribution Quiz
Human Resource Quiz
Netweaver Quiz
Customer Relationship Management Quiz
Production and Planning Quiz
Networking Programming Quizzes
Corba Quiz
Networking Quiz
Microsoft Office Quizzes
Microsoft Word Quiz
Microsoft Outlook Quiz
Microsoft PowerPoint Quiz
Microsoft Publisher Quiz
Microsoft Excel Quiz
Microsoft Front Page Quiz
Microsoft InfoPath Quiz
Microsoft Access Quiz
Accounting Quizzes
Financial Accounting Quiz
Managerial Accounting Quiz
Testimonials | Contact Us | Link to Us | Site Map
Copyright ? 2008. Academic Tutorials.com. All rights reserved Privacy Policies | About Us
Our Portals : Academic Tutorials | Best eBooksworld | Beyond Stats | City Details | Interview Questions | Discussions World | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Indian Free Ads | Jobs Assist | New Interview Questions | One Stop FAQs | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | One Stop Testing | Webhosting in India | Dedicated Server in India | Sirf Dosti | Source Codes World | Tasty Food | Tech Archive | Testing Interview Questions | Tests World | The Galz | Top Masala | Vyom | Vyom eBooks | Vyom International | Vyom Links | Vyoms | Vyom World | Important Websites
Copyright ? 2003-2024 Vyom Technosoft Pvt. Ltd., All Rights Reserved.